Adhesive bonding is the future
From the lifting table to the dance floor
E-Cube: cutting costs with tailored logistics

The corporate magazine 02/2013

Think Tomorrow
Think Now
Think Green

The forklift truck is yesterday’s news
The future of cutting-edge logistics

Think Green
E-Cube: cutting costs with tailored logistics

Think Now
From the lifting table to the dance floor

Think Tomorrow
Adhesive bonding is the future
Contents

3 | Editorial

4 | News + trade shows

6 | The independent forks that are replacing fork lift trucks
 The forklift truck is yesterday’s news

10 | Adhesive bonding is the future
 Innovative technology in the automotive industry

12 | From the lifting table to the dance floor
 Acting today to recruit the employees of tomorrow

14 | E-Cube: cutting costs with tailored logistics
 Made-to-measure logistics solutions for our overspray removal system

17 | Who’s who

18 | Around the globe

Imprint

2013 © Eisenmann AG, 11-2013

Circulation: 9,000
Publication frequency: biannual
Publisher: Eisenmann AG, Tübinger Straße 81, 71032 Böblingen, Germany
Editorial Lead: Tanja Thoma-Ly
Contact: davinci@eisenmann.com, Phone: +49 7031 78-1185

Printed by: Offizin Scheufele Druck und Medien GmbH & Co. KG,
Tränkestraße 17, 70597 Stuttgart
Dear readers,

This fall, in collaboration with Stuttgart University's Institute for Mechanical Handling and Logistics, we unveiled a totally new conveyor system that promises to revolutionize intralogistics. In this issue, learn how the twin tines – which do without forklifts or pallet trucks – will open up areas where automation was not technically or economically feasible until now. The so-called independent fork system will offer an affordable, versatile alternative to today's autonomous transportation solutions. It will bear its official name upon its market launch in 2014.

A technology company is always on the look-out for fresh talent that is dedicated, open minded and bursting with new ideas. At Eisenmann, we are committed to providing outstanding training and giving new employees real responsibility early in their careers. This played a major role in prompting the two young men featured in this issue to join our team.

Did you know that 20 kilograms of glue is used in assembling an average mid-size sedan? Precision, stiffness and low weight are the key advantages of adhesive bonding that make it an attractive option for automakers – especially with respect to lightweight construction. Our subsidiary, intec Bielenberg, develops the facilities for this joining method and demonstrates its capabilities in BMW's project i and elsewhere.

Furthermore, we have joined forces with a logistics specialist to devise a service that aids the seamless operation of E-Cube, our ingeniously simple and energy-efficient overspray removal system. By tailoring the delivery of filter modules to the customer's needs, we also keep down storage costs.

In the previous issue, we reported on twenty years of German-Russian collaboration for the destruction of chemical weapons. But nobody could have guessed that this would become such a hot topic only a short while later. In light of recent political developments in Syria, our experts have been sought-after by journalists who want to know more about the technological challenges and opportunities involved in the disposal of chemical weapons. We also provide a few examples of relevant press coverage.

We hope you find the latest DaVinci both educational and entertaining.

Dr. Matthias von Krauland
Chairman of the Executive Board
In June of this year, Eisenmann Mexico won a contract worth several million US dollars for a plastics painting line for Honda. The new line will be installed at the automaker's new plant in Celaya, in the state of Guanajuato. Honda is investing a total of 800 million US dollars (approximately 600 million euros) in the facility, where 200,000 cars will be manufactured annually, starting March 2014.

"This contract underlines the current trend towards investment in Mexico," says Sebastian Albeck, General Manager of Eisenmann Mexico. "The country enjoys a strategically favorable location, sharing a border with the US and a free trade agreement with more than 40 nations. As a result, it is attracting significant capital inflows, particularly in the automotive industry."

Apart from Foshan in the South of China, Volkswagen is now equipping two production plants with resource-efficient key technology from Eisenmann. The scope of the contracts includes end-to-end paint lines worth hundreds of millions of dollars – from pretreatment to electrocoating with the E-Shuttle conveyor, to complete spray booths with the E-Scrub low-energy overspray separation system, to cavity protection. This deal signals Eisenmann's intention to participate even more actively in this sector's expansion in future, as it looks to steadily increase its market share in the emerging economies.

On the up and up: the Chinese automotive industry is set to expand by 25 percent by 2016.

+++ Eisenmann China +++

Strategic success with Shanghai Volkswagen

Apart from Foshan in the South of China, Volkswagen is now equipping two production plants with resource-efficient key technology from Eisenmann. The scope of the contracts includes end-to-end paint lines worth hundreds of millions of dollars – from pretreatment to electrocoating with the E-Shuttle conveyor, to complete spray booths with the E-Scrub low-energy overspray separation system, to cavity protection. This deal signals Eisenmann's intention to participate even more actively in this sector's expansion in future, as it looks to steadily increase its market share in the emerging economies.

+++ Eisenmann Mexico +++

Plastics painting line for Honda Mexico

In June of this year, Eisenmann Mexico won a contract worth several million US dollars for a plastics painting line for Honda. The new line will be installed at the automaker’s new plant in Celaya, in the state of Guanajuato. Honda is investing a total of 800 million US dollars (approximately 600 million euros) in the facility, where 200,000 cars will be manufactured annually, starting March 2014.

"This contract underlines the current trend towards investment in Mexico," says Sebastian Albeck, General Manager of Eisenmann Mexico. "The country enjoys a strategically favorable location, sharing a border with the US and a free trade agreement with more than 40 nations. As a result, it is attracting significant capital inflows, particularly in the automotive industry."
In the spotlight: Eisenmann technology
Disposal of chemical weapons

The German media, including print channels and public broadcasters, took a keen interest in chemical weapons disposal.

Trade shows

January 2014
14 - 16 Biogas Convention, Nuremberg, Germany

February 2014
25 - 27 LogiMAT, Stuttgart, Germany

March 2014
11 - 13 JEC Europe, Paris, France
11 - 13 Interlakokraska, Moscow, Russia

April 2014
8 - 11 PaintExpo, Karlsruhe, Germany
8 - 10 Waste and Bioenergy Forum, Kassel, Germany

May 2014
AMS Conference, Shanghai, China
5 - 9 IFAT, Munich, Germany
19 - 23 CeMAT, Hanover, Germany
20 - 22 IE expo/IFAT China, Shanghai, China

June 2014
3 - 6 Ecwatech, Moscow, Russia

For current events, please go to www.eisenmann.com
The driverless independent fork system has the potential to revolutionize intralogistics. Invented by Stuttgart University’s Institute for Mechanical Handling and Logistics, the technology has been developed to production readiness by Eisenmann. The first generation of the new pallet robot will be launched in 2014.
There’s not a forklift or pallet truck in sight. The heavily loaded euro pallets float across the factory floor as though guided by an invisible hand. But it’s no illusionist’s trick. It’s a revolutionary innovation in intralogistics: the independent fork system. Now almost production-ready, it was demonstrated to visitors at Eisenmann’s Holzgerlingen facility this fall. “This new product is the perfect addition to our current range of high-performance conveyors,” declares Executive Board Member Bruno Geiger, responsible for Eisenmann’s Conveyor Systems.

At the heart of this new technology – devised by Stuttgart University’s Institute for Mechanical Handling and Logistics (IFT) – is a pair of driverless tines that coordinate their movements autonomously. “Tines” is the term Eisenmann uses for these robots the size of a large skateboard, whose stainless steel housing fits neatly into the spaces under euro pallets. The shiny metal shell hides the drives, the batteries, and the communications, navigation and control electronics.

Research engineers at the IFT came up with the idea for this novel floor conveyor in 2006. Following seven years of development, the institute turned to Eisenmann to produce and evolve the solution in 2013.
Prototypes in Eisenmann’s pre-assembly hall in Holzgerlingen offer a foretaste of tomorrow’s cutting-edge logistics. “All processes are controlled by a computer via WLAN, and the robots identify their position in the route network by means of barcodes fixed to the floor,” explains Ralf Weiland, Senior Vice President for Conveyor Systems at Eisenmann. In a scene reminiscent of a science fiction movie, the powerful tines move noiselessly into the spaces under the wooden pallet, pause for a moment, then lift up the pallet and its load. A pair of tines can carry up to 400 kilos today, but future models will be able to handle 1,000 kilos. The conveyor carries the pallet along routes marked on the floor with adhesive tape, and sets them down at the desired position.

“The independent fork system opens up new applications in areas where automation is not economically or technically feasible at present,” says Geiger. That applies, for example, to warehouse pre-storage and picking zones, where flows of goods can vary considerably. Today, these places are populated by pallet trucks, pedestrian electric pallet movers and forklifts. But in the future, there could be countless twin tines swarming around the halls, enabling highly efficient, centrally controlled pallet logistics. Moreover, to meet new requirements, the system can quickly be modified or extended to include additional components.

What prompted Eisenmann to invest in this technology was the revolutionary design of the drives. “This travel, steering and lifting mechanism is so robust and so compact that all the components required can be fitted into the tines, despite the very limited space available,” explains Weiland. “That’s the system’s standout feature and unique selling proposition, and it will be the focus of future developments, too.”

Eisenmann and the IFT have already defined the technical milestones. In 2015, the solution will go on the market complete with collision-avoidance mechanisms to prevent injury, enabling it to be deployed alongside pedestrians and other floor conveyors and trucks. In 2016, a new version will allow the twin tines to move in trains of loaded or empty units, and will enable users to switch between automated and manual operation. Other drawing-board ideas include using a tablet computer as a controller, inductive lane guidance, and inductive charging.

Future enhancements could enable order picking with driverless convoys that deliver their pallets to predefined positions in a production line without any mechanical coupling. And the solution could turn other visions into reality in the coming years: the unloading of entire trucks at the touch of a button, for instance, or the operation of very densely-packed block storage areas.
Professor Karl-Heinz Wehking has been Managing Director of the Institute for Mechanical Handling and Logistics (IFT) at Stuttgart University since 1995. Established in 1927, the internationally respected institute is engaged in the development and automation of conveyors, warehouse and handling equipment. Other core fields are logistics and wire and cable technology. Professor Wehking spoke to DaVinci about the independent fork system and its possibilities.

“Differential steering and speed control will change the face of logistics”

Professor Wehking, how will the independent fork system shape the floor conveyer technology of tomorrow?

This innovation will lead to a paradigm shift in intralogistics – away from heavy, expensive and stationary devices and toward compact, efficient and adaptable technology. And the solution can easily be converted or extended to meet new requirements, making it ideal for warehouse pre-storage zones, high-bay installations and order picking. That gives it a decisive edge over hardwired equipment which can only be modified at huge expense, if at all.

It’s going on the market in 2014: what will be its first practical applications?

At first, our customers will deploy the independent fork system in closed-off spaces and in automatic operation. Compared to current prototypes, its rated load will be increased to 1,000 kilos and its speed to one meter per second. But the very next release will come with automatic safety mechanisms, allowing it to be used alongside pedestrians and other floor conveyors. That will create a raft of new opportunities, because then the system will be deployable at any distribution center or production plant. The core feature of this technology – differential steering and speed control – will change the face of logistics. But completely different applications are conceivable, too, such as in automotive final assembly and painting lines. Thanks to the IFT’s close collaboration with Eisenmann, we can quickly turn this vision into reality in the shape of market-ready technology.

Will other areas benefit from this technology besides intralogistics?

Definitely. The independent fork system will continue to evolve over the coming years, opening up even more fields of application. For example, we’re planning to enable the solution to be switched from automatic to manual operation. That would allow you to remotely unload an entire truck using a series of coupled pairs of tines, with this pallet train then moving autonomously to the storage area. The warehouse employee would switch to automatic mode, simply by touching a button on his control device or with one swipe on his iPad.
Adhesive bonding is the future

Welding is passé: automakers and plant engineering companies are embracing solutions based on adhesive bonding. BMW is employing this innovative technology in its Project i to join components made from carbon and other materials. The corresponding system was developed by intec Bielenberg.

The auto industry’s robots will need to acquire new skills. At present, these computer-driven jacks-of-all-trades mostly wield welding tools. But in the future, they will increasingly apply adhesives with very high precision to new kinds of components. “With adhesive bonding, we are already achieving 30 percent stiffer joints than with spot or seam based methods such as welding,” explains Michael Lachner, General Manager of intec Bielenberg. “And this technique will play a much bigger role going forward,” he adds.

Within Eisenmann Group, intec Bielenberg is the center of competency for viscous material pumping and metering systems. These include cutting-edge two-component adhesive bonding plants used in production engineering. New developments will make automotive manufacturing dependent on equipment of this kind: Growing demand for lightweight components and greater efficiency can only be met using advanced materials such as carbon fiber reinforced plastics (CFRP), lightweight metal structures and high-tensile steels. Only adhesives can create stable bonds between these diverse materials.

“BMW’s Project i is an impressive example of what state-of-the-art adhesive bonding can accomplish,” explains Frank Kübler, Key Account Manager at BMW and responsible for sales and execution of the project. Intec Bielenberg collaborated with the Munich-based automaker for three years to develop adhesive bonding solutions for the BMW i3 and i8 electric and hybrid vehicles. These are the world’s first volume-produced cars whose bodies are bonded almost entirely with adhesives. And the two-component adhesive bonding plant deployed in manufacturing these bodies is a world first for the auto industry.

Before the 44 bonding stations begin work on one of the futuristic car bodies, piecing it together like a huge construction set, the 75 cleaning units come into play. These were also developed by intec Bielenberg. Cleaning is necessary because the surface of parts made from CFRP (also known simply as carbon) must be free of dust and other debris before they can be bonded. A robot performs this task, wiping what will be the bond seam with a felt block. One robot arm holds the felt, soaked in isopropanol, while a second arm dexterously guides the component so that it brushes against the underside of the felt block. When the bonding surface is clean, the component is ready for the next step, and the robot takes a fresh felt block from the feeder. Frank Kübler never ceases to admire the fascinating interaction of carbon, felt and steel. This is what he has been working with BMW to achieve since 2010.

The BMW contract is a beacon project for intec Bielenberg’s leading adhesive technology. Not that adhesive applications in car manufacturing were new to the company: “We have three decades’ experience in this field,” stresses Michael Lachner. Many automobile parts are already bonded by adhesion: a mid-range model requires about 20 kilograms of glue and seams totaling some 60 meters in length. Parts bonded by this method include windshields in everything from roadsters to heavy trucks, sound absorption materials, body components, and much more. In addition to producing greater stiffness than welding, adhesive bonding also improves noise and vibration damping in the passenger compartment. This means a more pleasant driving experience for customers, who seldom know which parts of their cars are glued.

But this is set to change – as these high-performance adhesive bonds have become well established in automotive and plant manufacturing. “If you’re looking to reduce weight, improve resource efficiency, or use composites made from diverse materials, adhesive bonding quickly becomes an interesting option,” explains Lachner. The same applies in the renewable energy sector, where the technology can be employed on wind turbine blades and photovoltaic panels.
panels. Even household appliances are increasingly glued together. "But the auto industry will remain the chief focus of our business", predicts Key Account Manager Kübler, "because that's where we have extensive experience and where we expect significant demand for new applications in the future."

The top priority for the company's adhesive bonding team is to supply solutions precisely tailored to the customer's production processes. "This positions us as a reliable partner for innovation," says Lachner. And made-to-measure technology is vital for BMW, an intec Bielenberg customer for some 20 years. The carmaker awarded the contract in late 2010, and this was followed by an intensive development phase lasting more than 12 months. The plant was delivered, assembled and commissioned by summer 2013 – in time for the start of pre-production.

Intec Bielenberg's processes and solutions are constantly refined and improved. Partnerships with research organizations and the company's own research center play a key role. For example, endurance tests are conducted at the center in collaboration with suppliers and customers, enabling new methods to be validated and modified to meet partner's needs. This applies both to the adhesive technology itself and to all associated processes – from workpiece cleaning, to heating the components of the adhesive to the required temperature. A current challenge for the engineers is to develop adhesive technologies that can be more precisely controlled, for example through the use of multi-component products. Against this background, adhesive bonding is one of today's most promising technologies.
From the lifting table to the dance floor

Marco Jüngert and Thorsten Schwab are dynamic, dedicated and driven to succeed. They obtained their degrees from the Baden-Württemberg University of Cooperative Education (DHBW) in conjunction with Eisenmann. On graduating, they were immediately offered permanent positions.

Lifting tables are used on assembly lines to move cars from one level to another. The tables usually raise the loads by means of double scissors. "Should they fail, the paint shop soon comes to a standstill. And after 24 hours, so does the entire factory," reports mechanical engineer Marco Jüngert. For this reason, lifting tables need to be extremely reliable without being too expensive. Because customers sometimes struggled to meet these requirements, the lifting-table project was assigned to Jüngert in his second year at Holzgerlingen. A few months previously, he had begun studying mechanical engineering at the Baden-Württemberg University of Cooperative Education (DHBW) in the town of Horb, with Eisenmann providing the work experience component of the course.

During the classroom-based phase of this degree, the young man completed a research project on lifting tables. He examined, compared, developed, rejected and re-developed designs, models, load distributions and drive variants. On returning to Eisenmann for the practical phase, he teamed up with experienced colleagues to develop a prototype with central scissors, building it in the pre-assembly hall. "The lifting table was five meters long, one meter wide, and capable of lifting 1.5 metric tons. I stood in front of it and was really proud." The table is now in its third generation, featuring a lead screw that enables a much smaller motor to be deployed.

Motors – such as the ones that give cars their throaty growl – are not what gets Thorsten Schwab’s heart racing. He’s more impressed by expansive plants and powerful production systems. When he was in twelfth grade, he came to Eisenmann for three days’ work experience. He then sent out his applications to potential placement companies for his cooperative education. Eisenmann sent him an acceptance letter within days - and Schwab jumped at the opportunity.

I completed grade school in July 2009, and by October, I had already begun my practical training in electrics, metal work, assembly, and more," recalls the young business and engineering graduate.

The DHBW has eight main and four satellite sites, and cooperates with around 9,000 enterprises to offer a wide range of nationally and internationally accredited bachelor’s degree programs. It recently added part-time and cooperative masters
courses to its portfolio. After his first practical semester, Schwab spent the next 12 weeks in the classroom studying a raft of technical subjects, from technical physics to technical mechanics and materials science, plus math and business studies. He then returned to his placement company, Eisenmann.

"I prefer hands-on learning and working to poring over books and memorizing definitions," Schwab admits. Early in his placement semester, he developed a software tool that collects specific procurement data, and indicates price trends and more. Two years later, colleagues were still calling him when they needed help with the tool. But it wasn't all exciting projects - Schwab does recall being assigned routine tasks now and then.

Schwab is now employed in technical sales in the Automotive Systems business unit. His time working and studying has provided valuable experience for his day-to-day tasks: ‘I always start by asking how much it is going to cost. Then I may well look for other, simpler solutions. My cooperative education degree has helped me to keep a cool head, and set about finding the right answers calmly and confidently.' His colleague Marco Jüngert now has a master’s degree in industrial management under his belt, in addition to his bachelor’s in production engineering. His employer actively supports and rewards staff who choose to continue their education. And Schwab and Jüngert are unanimous in their conviction that Eisenmann knows how to look after its young talent. On October 1 this year, 25 students commenced their degree programs at Eisenmann and at the DHBW. And in September, 29 youngsters started their vocational training in the company.

Marco Jüngert

Jüngert describes himself as a technology buff who enjoys playing around with computers in his spare time, too. But on a Friday, as the afternoon approaches, his show dance formation team waits for him. Ultimately, it's all about cooperation and teamwork - rather like at Eisenmann.
The new E-Cube overspray removal system is kind to the environment, and kind to your budget. Eisenmann offers a made-to-measure service to deliver replacement filter modules.

Removing tiny paint particles from the air is one of the most complex stages of the whole painting process. But the innovative E-Cube overspray removal system has just made this laborious task a great deal easier. For example, in a ten-meter long spray booth, operated in three shifts and producing 60 kilograms of overspray per hour, you would need to exchange an average of between six and ten separation modules per week, depending on the operating model being used. The number of cubes required varies according to production volumes, overspray, workpiece geometry, paint properties and positioning inside the paint shop. It is easy to use and does not consume water, chemicals or other additives, allowing customers to make significant cost savings by using less energy and generating less waste.

And the savings do not stop there: First, filter modules are supplied folded up, so they require less space, and they easily fit on a standard euro pallet, even when fully assembled. Second, Eisenmann offers a logistics service tailored to the customer’s individual needs, ensuring that the right number of fresh modules is delivered each week. As Holger Ernst, Eisenmann’s Head of Services explains, the cost benefit is obvious. “The customer only needs a limited amount of storage space for the cubes required in standard operation,
plus a small number of extras just in case. Before they are collected for disposal, used modules can be stored in the space left by the fresh ones that replace them, eliminating the need for elaborate and expensive storage solutions. In general, customers will still be able to use their established disposal methods.

Another advantage of the E-Cube service is that deliveries are made regularly, without staff having to place orders. Once a customer has installed the new overspray removal system, the number of cubes required per week can be determined within four to five weeks of standard production. Once this ‘trial phase’ is over, a supply agreement specifies the quantities needed by the customer to ensure the paint shop runs smoothly. If the standard production throughput changes, the number of cubes delivered can easily be adjusted.

Eisenmann collaborates with a leading logistics specialist to ensure the best possible service and guarantee that supply matches each customer’s demand. As Ernst explains, “Our partner not only operates a large central warehouse, but also regional centers that reduce transportation distances, enabling each customer to be offered a made-to-measure package of services.” This convenient logistics strategy reduces Eisenmann’s own manufacturing and transportation costs, and these efficiency savings are passed on to customers in the form of lower unit prices. Such win-win solutions are the goal of an optimized services portfolio. Therefore, Eisenmann is also exploring other potential customer-specific services.
We colour your life.

Discover more on general finishing.
“Never give up!”

Michael Heinrich graduated with a degree in engineering with a business focus. He is Director of Sales of Eisenmann’s Surface Finishing business unit.

How does a good working day begin? As an early riser, I need a quick shower and a hearty breakfast to make sure I get to the office in a good mood. Usually I am one of the first to arrive, and I look forward to seeing my colleagues.

What is your motto – at work and in your private life? Never give up. Because sales projects are hotly contested and a contract is not won until the customer has signed on the dotted line. I also apply this motto to my private projects.

What do you think makes a good sales professional? As we are an international plant engineering enterprise, I expect my fellow sales staff to be able to learn new things, listen to the customer and translate what they say into the ideal solution for both parties. Sales is vitally dependent on lasting customer relationships, which need to be cultivated outside of concrete project work. So what is needed are people skilled at networking, who can help position Eisenmann at all levels and gather information. At the same time, the salesperson is the customer’s advocate, so to speak, representing their interests.

How do you motivate your team? I know my employees’ anxieties and fears because I have been in sales my whole career. So my office door is always open, and I am always available to bounce ideas around with people. These exchanges with my colleagues are essential if we are to strike the right balance between customers’ needs and business imperatives, and help the project reach a successful conclusion. I work together with my employees to set realistic targets, and give them the self-confidence and space to go and achieve those goals.

And how do you maintain your own work-life-balance? I played sport from a very early age. I started with athletics, before taking up volleyball and then rowing. In fact, I competed seriously for several years. These days, I still regularly go jogging to help me unwind. Last year I began climbing.

If you didn’t work for Eisenmann, what would you be doing instead? I am very interested in sport, and have been for a number of years, both in terms of the physical benefits and the relationship between exercise and nutrition. Perhaps I would have ended up in that field. It involves working with people and identifying their needs – just like sales.

Which personality impresses you, and why? Since I saw his presentation at our Technology Forum, I have been impressed by Bertrand Piccard and his family. I admire the way he approaches new challenges and conquers perceived obstacles. Piccard’s strategy of leaving one’s comfort zone has given me a new perspective and confidence to push for change.

What’s been your biggest success outside of work? In my youth, I would say it was winning the German junior rowing championship in the lightweight quad scull event. I spent two years leading the team as stroke. In the first year, our only goal was to avoid coming last. But in the second year we were the dominant crew, and won all our races.

What do you value most? My two children: I want to see them happy and hope that they develop as people according to their own particular interests and abilities.
Meeting our Russian customers’ every need – for twenty years

In summer 2002, Ford became the first multinational corporation to open a factory in St. Petersburg, Russia. Since then, more and more international automakers have invested in the fast-growing Russian car market, and are collaborating with local OEMs. And that is reason enough for Eisenmann to further expand its presence in the country: the company recently opened a new office in Kaliningrad, the tiny Russian enclave on the Baltic Sea, while its Moscow office celebrated its 20th anniversary this year. With five locations and over 50 employees, Eisenmann has greater resources than any of its rivals on the Russian market.

Since first entering the Russian automotive market in 1975, Eisenmann has sold approximately 150 plants in the country, with a combined value of over 1.35 billion euros.

In addition to the auto industry, the destruction of chemical weapons was a key focus of Eisenmann’s activities in Russia in the last years. There are chemical weapons stored at seven sites across the country: at four of those sites – Pochep, Kizner, Kambarka and Gorny – disposal facilities were constructed with financial support from Germany. So far, 6,300 metric tons of blister agents and 13,000 metric tons of nerve agents have been destroyed. To date, Eisenmann has delivered equipment to the tune of 360 million euros.
Eisenmann’s Moscow office is situated at the heart of the Russian capital.

“...The Russian government is becoming increasingly open, offering attractive conditions to foreign investors in order to spur growth, and not just in the automotive sector. Today, on the streets of Russia, there are approximately 280 cars per 1,000 people, compared to 550 cars per 1,000 inhabitants in Germany. Russian vehicles are, on average, over ten years old. So the prospects on the Russian market are excellent for the German automotive industry, especially as Russia holds German engineering in very high esteem.”

Thomas Dehm,
Managing Director of Eisenmann Russia

- Vladivostok
 - Biggest customer: Mazda Sollers
- Service center, Vladivostok
- Kambarka
 - Service center, Tatarstan/Yelabuga region
 - Biggest customer: Ford Sollers (automaker); Mefro Wheels (automotive supplier in Naberezhnye Chelny)
- Yelabuga
 - Service center, Tatarstan/Yelabuga region
 - Biggest customer: Ford Sollers (automaker); Mefro Wheels (automotive supplier in Naberezhnye Chelny)
- Service center, Samara/Tolyatti
 - Biggest customer: Avtovaz and GM Avtovaz (automakers)
- Service center, Samara/Tolyatti Automotive cluster
 - Biggest customer: Avtovaz and GM Avtovaz (automakers)