80 MILLION VEHICLES PER ANNUM ARE MANUFACTURED WORLDWIDE.
30.5 MILLION CIVIL AVIATION FLIGHTS TAKE OFF EVERY YEAR.
AND EUROPE’S RAILWAYS CARRY 7.8 BILLION PASSENGERS.

HUMANITY IS ON THE MOVE.
THE FUTURE IS MOBILE.

EISENMANN DEVELOPS EFFICIENT PRODUCTION PLANTS
FOR THE AUTOMOTIVE, AEROSPACE AND RAILWAY SECTORS.

CONTENTS

PAINT SHOPS – TURNKEY PLANTS FROM A SINGLE SOURCE 4
MATERIAL FLOW – CONVEYOR SYSTEMS FOR ASSEMBLY LINES 6
CONTROL SOFTWARE – THE E-MES PRODUCTION CONTROL SYSTEM 9
SURFACE FINISHING – PRETREATMENT AND DIP-COATING CONVEYORS 10
OVERSPRAY REMOVAL SYSTEMS 14
APPLICATION ENGINEERING 16
CAVITY PRESERVATION AND UNDERBODY SEALING 17
PAINT SUPPLY SYSTEMS 18
LARGE-CAPACITY SPRAY BOOTHS 19
OVENS 20
ADHESIVE BONDING 22
CARBON FIBER PRODUCTION 24
ENVIRONMENTAL TECHNOLOGY 26
MAINTENANCE AND SERVICES 30
FULL SERVICE AND OPERATOR MODELS 32
TEST CENTER 34
THIS IS EISENMANN 35
Eisenmann assumes overall responsibility for planning and building turnkey, end-to-end paint shops – including all construction work and building services.

We are a leading provider of paint-shop solutions for attachment parts in the automotive sector – for both metal and plastic components such as bumpers, mirror covers and front ends. Eisenmann is a global market leader in this sector, having installed more than 200 paint shops for plastic parts, including the largest facility of this kind in Europe.

Eisenmann painting lines for coating alloy wheels are also world-renowned: they boast a high degree of automation, deliver a first-class surface finish, and are extremely cost-effective to operate.

Environmental protection is built into our solutions: Eisenmann engineers champion the use of emission-free processes and methods that conserve energy and water. Where required, we integrate high-efficiency installations for exhaust air purification, waste water treatment and waste disposal.

Example paint shop in the automotive industry

1. Pretreatment
2. E-coating
3. EC oven
4. Spray booths
5. Intermediate oven
6. Cooling zone
7. Paint mixing room
8. Waste water treatment
Assembly-line planning entails developing an ideal layout and selecting best-fit conveyors and assembly equipment. Furthermore, the core issues of process planning and line balancing must also be addressed.

Eisenmann offers these services as a complete package, ensuring that the plant is perfectly aligned with the customer’s assembly processes. Besides assembly tasks, our solutions can incorporate a variety of intralogistics processes – from material delivery and production-order picking to feeding materials onto the assembly line.

MATERIAL FLOW CONVEYOR SYSTEMS FOR ASSEMBLY LINES

As a provider of conveyor solutions and final assembly lines, Eisenmann integrates a wide variety of material flow systems into the production and assembly process.

<table>
<thead>
<tr>
<th>Material flow systems from Eisenmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead conveyors</td>
</tr>
<tr>
<td>Electrified monorail systems for car bodies</td>
</tr>
<tr>
<td>Chain lift hangers</td>
</tr>
<tr>
<td>Final assembly lines with EMS</td>
</tr>
<tr>
<td>Power & free conveyors</td>
</tr>
<tr>
<td>Shuttle conveyors</td>
</tr>
</tbody>
</table>

Transfer to marriage station via an electrified monorail system (EMS). The chain lift provides flexibility in lifting and lowering of car bodies at workstations.
Intralogistics requires smart engineering and cutting-edge equipment with state-of-the-art control technology. This is especially true in automobile production, where complex process steps must be seamlessly coordinated and very high plant availability is indispensable.

Among our reference plants for intralogistics material flow there are unique, fully integrated systems for assembly, body shop and paint shops. Our conveyor systems link together entire assembly lines from trim to chassis to final line. They guarantee that subassemblies delivered in sequence from the supplier park are fed to the assembly process just in time. Robot systems group together body subassemblies, electrified monorails and automated guided vehicles transfer them to the body shop just in sequence, skillet lines act as mobile workbenches, and lightweight storage and retrieval vehicles ensure a rapid movement of goods in the warehouse.

Scalable from single modules to end-to-end solutions
E-MES is a flexible, scalable production control system for monitoring and high-level control of subsystems in automated manufacturing. At both operations and process control levels, data is captured, analyzed and visualized – via a browser-based graphical user interface. The more subsystems are incorporated, the greater the detail that can be displayed – delivering maximum visibility into production processes.

Web technology enables monitoring via tablet or smartphone
The new-generation E-MES user interface runs in a browser and exploits HTML5. The technology is compatible with all leading operating systems and supports the dynamic, graphical visualization of data analysis results. Reports and findings are accessible to users anywhere, at any time – no clients need to be installed. This enables the production manager to monitor plant and equipment from a tablet device or smartphone as well as from a stationary PC.
The E-Shuttle family
The E-Shuttle features freely programmable axes and transports vehicle bodies through pretreatment and dip-coating baths on individual shuttles. As they pass through the process baths, the bodies are rotated through an entire 360°. The shuttles have on-board controllers that allow specific process times to be programmed for each bath and each type of body. In addition, certain baths can be omitted. Thanks to continuous position sensing, all movements can be coordinated system-wide.

E-Shuttle 200 – slim-line, compact design
E-Shuttle 200 comprises two freely programmable axes – one horizontal and one rotation axis. The pendulum frame attached to the rotation axis enables a compact design by eliminating the need for a lifting axis.

E-Shuttle 300 – a highly flexible conveyor system
E-Shuttle 300 comprises three freely programmable axes: one horizontal, one lifting and one rotation axis. Individually programmable dip curves and process times ensure each body is cleaned and coated evenly.

DIP-COATING CONVEYORS ENSURE A PERFECTLY UNIFORM COATING OF METAL SURFACES AND CAVITIES, AND AN OUTSTANDING FINISH QUALITY. IN LINE WITH THE DEMANDS AND PROPERTIES OF THE PARTS TO BE COATED, EISENMANN OFFERS A RANGE OF CUSTOMIZED CONVEYOR MODELS. THESE INCLUDE CONVENTIONAL SYSTEMS SUCH AS ELECTRIFIED MONORAILS AND PENDULUM CONVEYORS, AND THE SHUTTLE RANGE THAT CONTINUES TO RAISE EFFICIENCY TO NEW LEVELS.
SURFACE FINISHING
PRETREATMENT AND DIP-COATING CONVEYORS

The Vario Shuttle delivers outstanding cleaning and coating results for heavy bodies weighing up to 1.5 tons. Depending on the geometry and the process, throughputs of up to 70 auto bodies per hour can be achieved. The freely programmable horizontal, vertical and rotation axes and the individually controlled shuttles enable the quick and easy configuration of dip curves and process times to a wide range of body types.

With its individually driven trolleys, the electrified monorail system is ideal for transporting large car bodies and truck cabs in low-throughput applications. Branches can be incorporated into the circuit using switches. The rails are either mounted on the factory ceiling or on a suspended or elevated steel construction.

The pendulum conveyor is a system that enables car bodies to be dipped into various pretreatment baths. Pendulum conveyors lower the bodies into the baths via inclined sections of the supporting rails. After pretreatment, the bodies are raised out of the baths via ascending sections of rails.
E-Cube – the mechanical overspray removal system
E-Cube is suitable for systems of all sizes and, due to its ingenious filter technology, operates without the need for chemicals, water or other additives – conserving resources and simplifying waste disposal. The cube-shaped design means separation modules require less space for storage; when fully assembled they fit on a europallet. E-Cube can be quickly and efficiently retrofitted to existing solutions that previously featured other separation modules. The arrangement of the filter elements ensures an ideal sequence of coarse and fine separation. Depending on the type of paint applied, the system can reduce emissions < 1 mg/m3 of air.

E-Scrub – the electrostatic overspray removal system
Overspray-laden exhaust air flows through the intake area to the separation module. As the air passes through the module, overspray particles are removed. The separation modules comprise an alternating arrangement of active and passive elements. In the active elements, a corona cloud forms under a high voltage, charging all paint particles. These particles are then attracted by the passive, grounded separating plate. This is covered with a thin layer of separating agent by a coating system. The paint particles are bonded to the separating plate and detackified by the separating agent. The agent containing overspray flows into the collection tank below the E-Scrub system.

The E-Cubes are made from recycled materials, are easy to replace, and as they require no chemicals or additives, they are simple to dispose of, too.

Maintenance-friendly and highly efficient: E-Scrub.

<table>
<thead>
<tr>
<th>Removal system</th>
<th>E-Cube</th>
<th>Venturi (circulation)</th>
<th>E-Scrub (electrostatic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Simple, no additives</td>
<td>Standard</td>
<td>Best separation, lowest pressure loss</td>
</tr>
<tr>
<td>Emissions</td>
<td>< 1 mg/m3</td>
<td>< 3 mg/m3</td>
<td>0.3 - 0.8 mg/m3</td>
</tr>
<tr>
<td>Pressure loss</td>
<td>Lower</td>
<td>Standard</td>
<td>Lowest</td>
</tr>
<tr>
<td>Operating/maintenance</td>
<td>Unskilled staff</td>
<td>Skilled staff</td>
<td>Skilled staff</td>
</tr>
<tr>
<td>Capex</td>
<td>Lower</td>
<td>Standard</td>
<td>Highest</td>
</tr>
<tr>
<td>Opex</td>
<td>Lower</td>
<td>Standard</td>
<td>Lowest</td>
</tr>
</tbody>
</table>

Overview of Eisenmann overspray removal systems.

Painting accounts for up to 70% of the energy required to manufacture a car. Despite optimized spray processes, it is not possible to completely eliminate overspray losses. Eisenmann develops methods that not only shrink energy consumption by up to 75% but also lead to water savings of as much as 86%. This reduces the environmental impact and cuts both carbon emissions and operating costs.
APPLICATION ENGINEERING

VarioBell v.2 – slim, fast and accurate

VarioBell v.2 from Eisenmann is one of the most cutting-edge solutions available for water-based paints and conventional painting systems. Its spray pattern can be adjusted to the precise shape required for each workpiece. What’s more, it is compact, delivers high application efficiency, minimizes paint wastage, and achieves high flow rates. It is particularly effective for complex cavities and undercuts, but can also be deployed for painting exteriors.

The dual-channel paint tube, and the microvalves directly behind it, minimize the amount of paint lost during changeover.

VarioCharger – for precisely metered electrostatic application of water-based paints

VarioCharger enables rapid changeover with minimal paint and rinsing-agent wastage, in combination with precise metering and high application efficiency. VarioCharger comprises two parallel metering cylinders, operated alternately. These control the cylinder-filling, painting and rinsing process steps. In contrast to conventional systems, VarioCharger leverages a directly driven piston instead of pigs.

Thanks to its compact design, the VarioCharger can be installed into a variety of robot arm types and makes, immediately upstream of the Eisenmann atomizer system.

CAVITY PRESERVATION AND UNDERBODY SEALING

Multiple coatings are applied to car bodies in order to make them corrosion-resistant. However, interior spaces cannot be reached during the coating processes. To protect these from corrosion, elastic layers of wax are applied in a process known as cavity sealing.

The flooding method can be employed on car bodies that are designed to be floodable. In this process, hot wax is pumped into the body cavities through nozzles. The bodies are then lifted and tilted to distribute the wax. Excess wax drains off into a collecting tank and can be reused.

Multiple coatings are applied to car bodies in order to make them corrosion-resistant. However, interior spaces cannot be reached during the coating processes. To protect these from corrosion, elastic layers of wax are applied in a process known as cavity sealing.

The flooding method can be employed on car bodies that are designed to be floodable. In this process, hot wax is pumped into the body cavities through nozzles. The bodies are then lifted and tilted to distribute the wax. Excess wax drains off into a collecting tank and can be reused.
PAINT SUPPLY SYSTEMS

Designed for efficiency and reliability
Water-based paints contain up to 200 chemical components. For best results, these must remain in a homogeneous suspension. But that’s not the only challenge. Because the color coatings are shear-sensitive, each single component, and the paint supply system as a whole, needs to convey the material without damaging it.

To fulfill exacting OEM quality requirements, Eisenmann employs pharmaceutical-standard components. These include stainless steel containers and pipes with electropolished weld seams. Many parts of the system, such as pipelines and ducts, are produced in-house. Following the customer’s acceptance of the equipment on our premises, the ducts (including the electromechanical components) play a key role in ensuring rapid, straightforward commissioning.

Eisenmann has been a supplier to the aerospace and railway industries for many years. Corrosion protection and the visual appearance of the coating are key imperatives in these sectors, too. Our large-capacity spray booths can be used to coat not only very large components but even entire aircraft and trains.

The use of composite materials by manufacturers creates a growing need for new activation processes prior to painting. In response, Eisenmann integrates both traditional sanding and alternative processes such as laser technology with the booths. Electrostatic overspray removal systems, dry scrubbers, horizontal or cross-flow Venturi scrubbers can be incorporated as required.

LARGE-CAPACITY SPRAY BOOTHS

Water-based paints contain up to 200 chemical components. For best results, these must remain in a homogeneous suspension. But that’s not the only challenge. Because the color coatings are shear-sensitive, each single component, and the paint supply system as a whole, needs to convey the material without damaging it.

To fulfill exacting OEM quality requirements, Eisenmann employs pharmaceutical-standard components. These include stainless steel containers and pipes with electropolished weld seams. Many parts of the system, such as pipelines and ducts, are produced in-house. Following the customer’s acceptance of the equipment on our premises, the ducts (including the electromechanical components) play a key role in ensuring rapid, straightforward commissioning.

Eisenmann has been a supplier to the aerospace and railway industries for many years. Corrosion protection and the visual appearance of the coating are key imperatives in these sectors, too. Our large-capacity spray booths can be used to coat not only very large components but even entire aircraft and trains.

The use of composite materials by manufacturers creates a growing need for new activation processes prior to painting. In response, Eisenmann integrates both traditional sanding and alternative processes such as laser technology with the booths. Electrostatic overspray removal systems, dry scrubbers, horizontal or cross-flow Venturi scrubbers can be incorporated as required.
OVENS

Convection ovens
Intelligent airflow management boosts efficiency. In low-temperature ovens, particularly in intermediate ovens between base coat and clear coat application, humidity can be removed from the recirculating air by condensation. The integrated controllers allow the required temperatures to be individually regulated, and adapt the airflow rate to the vehicle body being dried. This minimizes process times and maximizes throughput while ensuring uniform drying.

Drying by infrared radiation (IR)
Eisenmann’s infrared ovens have a compact design and enable the application of radiation to be modified in various ways, according to the coating. High efficiencies and the targeted delivery of heat, which prevents damage to the material, make IR drying an extremely effective, energy-saving process.

<table>
<thead>
<tr>
<th>Convection ovens</th>
<th>Infrared ovens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptable temperatures and airflow</td>
<td>Compact design</td>
</tr>
<tr>
<td>Short process times</td>
<td>Prevents damage to the finish</td>
</tr>
</tbody>
</table>

OVENS – NORMALLY THE FINAL STAGE OF A PAINT LINE – ARE DESIGNED ACCORDING TO THE CURING NEEDS OF THE COATING MATERIALS.
ADHESIVE BONDING

Applications
In the automotive sector, adhesive bonding is primarily used in body shops (structural bonding and sealing in combination with conventional methods such as welding), paint shops (seam sealing, underbody sealing) and final assembly (bonding cockpits, roofs, windows, and sound deadening mats). Today’s innovative bonding processes are employed to replace many thousands of spot welds per vehicle. Furthermore, they give the bonded components favorable material properties and improve both efficiency and product quality.

In contrast to welding, adhesive bonding is a low-temperature process that's compatible with the wide range of materials employed in lightweight vehicle construction. One key factor for product quality is stiffness. Given the same thickness, a bonded component is up to 30% stiffer than one joined by conventional methods. This is because the adhesive forces are not concentrated in spots but distributed over a wide area. As a result, thinner sheet metal can be used, reducing a vehicle’s weight. In addition, the process prevents contact corrosion, improves sound deadening and ensures optimum vibration damping.

Benefits
Structural bonding in body construction delivers a wealth of improved material properties throughout the vehicle:

- Enhanced driving comfort (dynamic and acoustic properties)
- Better passive safety (crashes)
- Reduced weight (lightweight construction, composite construction)
- Extended service life (durability)
- Potential for cost savings by reducing weld spots and material quantities
- The use of adhesive bonding processes can cut production times

<table>
<thead>
<tr>
<th>Single-component adhesive</th>
<th>Two-component adhesive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased stiffness</td>
<td>Ideal for bonds in lightweight construction</td>
</tr>
<tr>
<td>Prevents corrosion</td>
<td>For bonding two different materials</td>
</tr>
<tr>
<td>Reduces noise in vehicle interiors</td>
<td>An alternative to heat-based processes in the construction of vehicle bodies when bonding materials with differing expansion coefficients.</td>
</tr>
</tbody>
</table>

ADHESIVE BONDING, ONE OF THE OLDEST JOINING METHODS IN EXISTENCE, IS ENJOYING A RENAISSANCE IN THE AUTOMOTIVE AND PLANT ENGINEERING SECTORS. EISENMANN’S SUBSIDIARY INTEC BIELENBERG IS A TECHNOLOGY LEADER IN THIS FIELD, OFFERING INNOVATIVE AND HIGHLY EFFECTIVE SOLUTIONS.
GLOBAL DEMAND FOR CARBON FIBER ROSE BY 50% BETWEEN 2009 AND 2011. SIMILARLY, THE AUTO INDUSTRY IS ADOPTING COMPONENTS MADE FROM CARBON FIBER REINFORCED PLASTICS AT AN EXTREMELY FAST RATE. EMPLOYING THESE MATERIALS INSTEAD OF STEEL CAN HALVE A CAR’S WEIGHT, WHILE REPLACING ALUMINUM CAN DELIVER A WEIGHT REDUCTION IN EXCESS OF 28%.

CARBON FIBER PRODUCTION

Innovative ovens and furnaces

Eisenmann’s core competency in the area of carbon fiber production is the design and delivery of innovative oxidation ovens and carbonization furnaces. In conjunction with our highly effective exhaust air purification plants and heat recovery systems, we can create very energy-efficient end-to-end solutions.

The customer enjoys significant synergies: Eisenmann can provide full project-management services for all three plant types, which are ideally operated as a single, integrated system of heat sources and sinks.

In recent years, Eisenmann has evolved into a leading provider of this sophisticated technology: we have received orders worldwide for more than 50 oxidation ovens equipped with exhaust air treatment systems. Our success is based on a detailed analysis of process requirements, and continuous development and refinement of energy-efficient ovens.

We boast over four decades’ experience in thermal process technology, and our engineers are constantly looking for ways to optimize carbon fiber production systems and further improve process reproducibility.

From pilot installation to high-efficiency production line

Our versatile test facility in Holzgerlingen allows customers to identify and implement the most effective oxidation process for manufacturing carbon fiber to their specifications. This means they can determine the optimum process parameters and air flow, which can then be realized efficiently in the production-scale facility.

<table>
<thead>
<tr>
<th>Oxidation ovens</th>
<th>Carbonization furnaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical down flow</td>
<td>Low temperature furnaces</td>
</tr>
<tr>
<td>Center-to-end flow</td>
<td>High temperature furnaces</td>
</tr>
<tr>
<td></td>
<td>Ultra high temperature furnaces</td>
</tr>
</tbody>
</table>
Eisenmann designs plants with the goal of minimizing or eliminating emissions and problematic residues where possible. We also provide ways to allow process heat from one part of the plant to be used elsewhere in the form of energy or as process media.

Our environmental technology specialists are happy to leverage their broad expertise to advise customers on choosing the right combination of processes, in consideration of the local conditions and legal framework – from exhaust air purification to waste water treatment, recycling of valuable materials, production of ultrapure water, to energy recovery.

Eisenmann’s wide range of equipment enables us to tailor solutions to your application.

ENVIRONMENTAL TECHNOLOGY

A HEALTHY ENVIRONMENT AND STATE-OF-THE-ART AUTOMOBILE PRODUCTION ARE NOT A CONTRADICTION. RATHER, THEY GO HAND IN HAND – THANKS TO SOPHISTICATED TECHNOLOGIES THAT ENABLE ECOLOGICALLY SOUND MANUFACTURING.

<table>
<thead>
<tr>
<th>Exhaust air treatment</th>
<th>Waste water treatment</th>
<th>Waste disposal</th>
<th>Energy recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regenerative thermal oxidation (RTO)</td>
<td>Chemical-physical treatment</td>
<td>Fluidized bed incinerators</td>
<td>Water recirculation</td>
</tr>
<tr>
<td>Thermal oxidation (TO)</td>
<td>Membrane processes</td>
<td>Rotary kilns</td>
<td>Heat recovery systems</td>
</tr>
<tr>
<td>Adsorption processes</td>
<td>Biological processes</td>
<td>Turaktor® combustion chambers</td>
<td>Systems for recovering valuable materials</td>
</tr>
<tr>
<td>Combustion chambers</td>
<td>Waste water recycling</td>
<td>Chambustor chamber kilns</td>
<td></td>
</tr>
</tbody>
</table>

Overview of Eisenmann’s key environmental technology processes.
Regenerative thermal oxidation (RTO)
RTO is rapidly gaining in popularity thanks to its low additional energy requirements, and because in many cases, there are no suitable heat consumers on the same site. The Eisenmann concept features a special air circulation system with a rotating distributor instead of valve or damper systems.

Thermal oxidation (TO)
Thermal oxidation plants are regarded as robust, reliable, and universally deployable “omnivores”. Over 1,200 TO systems have been fully pre-assembled and tested at our site in Böblingen prior to shipment to customers. TO is ideal for applications where the waste heat can be recovered and directly utilized in other production processes.

Adsorption
In contrast to the thermal methods described above, adsorption processes do not require high temperatures, and do not convert the contaminants.

Adsorption wheel
Adsorption is used to concentrate air with low pollutant loads. The smaller the volume of air and the higher the concentration, the lower the investment and operating costs. This is why adsorption is a necessary first step in the treatment of large volumes of exhaust with few contaminants. This makes subsequent processes – such as combustion or solvent recovery – more cost effective.

Chemical-physical processes
Eisenmann develops and builds custom-tailored plants that leverage chemical-physical processes for the treatment of industrial waste water. These include: detoxification/oxidation, precipitation, flocculation, sedimentation, and flotation.

Membrane processes
Membrane processes are suitable for a variety of use cases. Ultrafiltration, for example, is primarily deployed in the automobile and metalworking industry for emulsion splitting. Waste water produced during surface degreasing contains grease and oils that can be easily removed via membrane technologies. Ultrafiltration is also ideal for concentrating paint and coating pigments, and producing clean filtrate.

Recycling waste water
The combination of waste water recycling and valuable materials recovery can deliver a favorable return on investment in many industries – including for environmental technology plants. One example is the use of an evaporator. When an evaporator is deployed in pretreatment, it is possible to achieve a zero liquid discharge process. The waste water is evaporated, and the distillate is recycled – meaning it can be reused during pretreatment. The use of this methodology eliminates the applicability of a range of regulations and restrictions, lowering the number of environmental audits.
EISENMANN SERVICE OFFERS A BROAD SPECTRUM OF SOLUTIONS TO MEET A DIVERSE RANGE OF REQUIREMENTS. IN ADDITION TO STANDARD AFTER-SALES SERVICES, WE PROVIDE CUSTOMIZED PACKAGES AND OPERATOR MODELS.

Proper maintenance is key to the longevity and efficient operation of production plants. What’s more, opportunities for improvement or upgrades must be regularly examined to keep the technology up to date in every way.

Eisenmann offers custom-tailored services:

Standard after-sales service
- Supply of spare parts
- Maintenance management
- Employee training and instruction

Plant optimization
- Retrofits and upgrades
- Plant modifications
- Process optimization
- Consulting

Custom solution
- Service modules
- Emergency on-call service
- Remote services
- Ramp-up support
- Support during production
FULL SERVICE AND OPERATOR MODELS

Full service – ongoing, on-site service
We already provide full services to customers in a diverse range of industries and service sectors. These services benefit from our extensive experience of building and operating process and conveyor technology. Our ongoing, on-site service guarantees constant availability of your plant and supports you throughout the system’s lifecycle. What’s more, it offers protection of your investment.

A full-service contract can also be regarded as a preliminary step towards an operator model. Under this arrangement, the customer retains responsibility for the operation of the plant.

Operator models (BOT) – an end-to-end package for total peace of mind
Operator models are an innovative business model with enormous potential. Eisenmann offers advice and assistance throughout all phases of the project, from the planning stage to construction and operation of the new plant. These contracts have a pre-defined term, after which the plant is generally transferred to the customer. The operator model contracts can also be extended.

The long-term nature of BOT contracts allows Eisenmann to prove the potential of the plant and the services provided, while you, the customer, are free to focus on your core business.

Over 15 years’ experience with operator models
For many years, a large number of manufacturers have reaped the benefits of Eisenmann operator models, including:
- Carese in Brazil (paint shop for truck cabs at Volkswagen Brazil),
- Endosul in Brazil (paint shop for truck components for Mastertech),
- CSG in Belgium (operation and maintenance of an electrified monorail system linking the supplier park with final assembly at Ford’s Genk facility), and
- CSK in Germany (operation and maintenance of the assembly line and the conveyor system linking the supplier park with final assembly at Ford’s Cologne plant).

Full service vs. Operator model

<table>
<thead>
<tr>
<th></th>
<th>Full service</th>
<th>Operator model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventive maintenance</td>
<td>Eisenmann plans and builds the plant, and Eisenmann employees ...</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>... operate the plant in line with your needs.</td>
<td></td>
</tr>
<tr>
<td>Repairs</td>
<td>... perform daily production tasks.</td>
<td></td>
</tr>
<tr>
<td>Ongoing customer support and assistance</td>
<td>... manage logistics and procurement of materials.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>... ensure process compliance and system availability.</td>
<td></td>
</tr>
</tbody>
</table>

Many customers choose Eisenmann’s outstanding operator models due to the comprehensive scope of service (compared here to the full-service model).
Eisenmann is a leading global provider of industrial solutions and services for surface finishing, material flow automation, thermal process technology and environmental engineering. A family-run business founded in 1952 in southern Germany, Eisenmann develops and builds made-to-measure manufacturing, assembly and distribution facilities that are highly flexible, energy- and resource-efficient – and have been deployed by enterprises worldwide for over 60 years. The company has around 3,800 employees in Europe, the Americas and BRIC countries.

Specialist engineers and technical staff comprise around half of the workforce. Thanks to their in-depth understanding of process engineering, they are able to develop plant configurations precisely tailored to each application. Prior to shipping, the systems are fully assembled and thoroughly tested at our dedicated Technology Center, ensuring problem-free installation and rapid commissioning at the customer site.

Ground-breaking technology, high customer satisfaction and outstanding cost-effectiveness underscore the stand-out quality delivered by Eisenmann.